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SUMMARY

In this article, a computational tool to simulate groundwater �ow in variably saturated non-deformable
fractured porous media is presented, which includes a conceptual model to obtain analytical expressions
of water retention and hydraulic conductivity curves for fractured hard rocks and a numerical algorithm
to solve the Richards equation. To calculate e�ective saturation and relative hydraulic conductivity
curves we adopt the Brooks–Corey model assuming fractal laws for both aperture and number of
fractures. A standard Galerkin formulation was employed to solve the Richards’ equation together with
a Crank–Nicholson scheme with Richardson extrapolation for the time discretization.
The main contribution of this paper is to group an analytical model of the authors with a robust

numerical algorithm designed to solve adequately the highly non-linear Richards’ equation generating
a tool for porous media engineering. Copyright ? 2006 John Wiley & Sons, Ltd.
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INTRODUCTION

Simulation of groundwater �ow in unsaturated fractured rocks is of interest to many active
research areas such as the deep geological disposal of radioactive waste. Deep disposal in
crystalline rocks is considered to be an e�ective means for isolating radioactive waste. How-
ever, groundwater migration could contribute to the return of radionuclides to the biosphere.
Thus, simulation of groundwater �ow provides a useful tool to establish long-term safety of
potential disposal sites.
Two possible modelling approaches to deal with �ow in fractured media are discrete fracture

and continuum models. Even a combination of both [1] could be employed. The �rst approach
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is based on an explicit description of groundwater �ow in individual fractures. This method
is computationally expensive and requires a detailed knowledge of geometric properties and
spatial distribution of fractures. In the continuum approach the fracture network and the rock
matrix are considered as an equivalent porous medium. This method is computationally less
expensive but its accuracy largely depends on the accuracy of the constitutive relations of
the equivalent porous medium. In the present study the continuum approach is adopted to
simulate groundwater �ow in unsaturated fractured hard rocks.
As it is di�cult to directly measure constitutive relations for a fracture network in the �eld,

these relations have been determined from numerical simulations of steady-state unsaturated
�ow in two-dimensional fracture networks [2]. Use of numerical simulation to determine
large-scale e�ective constitutive relations for unsaturated �ow in porous media has also been
reported [3, 4]. This methodology requires one simulation for each point of the water retention
curves.
In this work, constitutive relationships are described using a new model developed by the

authors, and closed analytical expressions are derived. As a consequence, the simulation code
results computationally e�cient, because it is not necessary to make several simulations to
obtain the water retention curves.
Groundwater �ow is assumed to obey Richards’ equation. Under unsaturated conditions it

is a highly non-linear parabolic equation, but it becomes elliptic and linear when the porous
media is fully saturated. Analytical solutions are not possible except for special cases. In
the last three decades many numerical methods have been developed to solve this equation,
with di�erent results. In general terms, numerical methods to solve the ‘h-based’ form are the
most common because they can be used for saturated and unsaturated soils. However, these
models often su�er from mass balance problems and unacceptable time step limitations [5].
The approach used in this paper has demonstrated to be free of these problems [6].
Richards’ equation is approximated by using a �nite element method for the spatial dis-

cretization combined with a third-order accurate algorithm for time approximation, based on
the Crank–Nicholson scheme. A Picard iteration method is used to deal with non-linear
terms. The algorithm is implemented in two-dimensional domains using unstructured trian-
gular meshes. To illustrate the performance and utility of the proposed algorithm, a water
in�ltration test in a fractured rock is analysed.
Although the constitutive model is being fully presented in a paper already sent to Hydro-

geology Journal, and the numerical strategy in Reference [6], just an abstract is presented for
the sake of completeness.
The main contribution of this paper is to group an analytical model of the authors to

obtain water retention curves in a non-deformable fractured porous medium with a robust
numerical algorithm designed to solve adequately Richards’ equation generating a practical
tool for porous media engineering.

GOVERNING EQUATIONS

Richards’ equation
As mentioned above, groundwater �ow through unsaturated fractured rocks is described by the
‘h-based’ Richards’ equation [7]. In our study this equation was stated in terms of the hydraulic
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head H within a bidimensional domain � with boundary @�=�D ∪�N and �D ∩�N = ∅

C(H)
@H
@t
+∇ · [K(H)∇H ]= 0 x∈� (1)

H (x; t) =H ∗(x; t); x∈�D

−K(H)∇H · �= q∗(x; t); x∈�N

H (x; 0) =H 0(x); x∈�
(2)

where C(H)= @�=@H is the moisture capacity, � being the water content, K(H) the hydraulic
conductivity tensor, and t the time variable. H ∗ is the prescribed value of hydraulic head over
�D, � is the unit outer normal, q∗ denotes the speci�ed values of normal component of �ow
at �N and H 0 is the initial condition. Hydraulic head H is related to pressure head h by

H = h+ z (3)

where z is the vertical dimension.
As already stated in the introduction, this is a highly non-linear equation, and hence the

choice of the numerical method plays a key role in the approximation of the problem.

MODELS AND APPROXIMATIONS

Constitutive model

To solve Equation (1), appropriate constitutive relations between water content � and H and
between K and H are necessary.
To compute the e�ective saturation and hydraulic conductivity curves of the fractured

medium, a speci�c model has been developed. Although a complete derivation of the equa-
tions will appear in Reference [8], currently in review process, a summary is presented here
to show the complete analytical expressions for e�ective saturation and relative hydraulic
conductivity, just for the sake of completeness.
Common approaches for deriving hydraulic conductivity curves rely on Mualem or Bour-

dine models [9, 10]. These models predict the relative hydraulic conductivity curves from
knowledge of the water content curves. Tensor K(H) will be modelled as K(H)=KsKr(H)
where Ks is the saturated hydraulic conductivity tensor and Kr(H) is a relative hydraulic
conductivity function. For unsaturated soils Van-Genuchten’s model is widely accepted, but
in the case of fractured rocks a constitutive model has to be derived.
A known method to deal with groundwater �ow modelling in fractured rocks is the con-

tinuum approach. This method considers mean values of both problem variables and physical
properties de�ned in a reference elementary volume (REV). A constitutive model (i.e. rela-
tions between capillary pressure, saturation and relative permeability) is necessary to represent
adequately physical processes. Accuracy of the modelling results is largely determined by the
accuracy of these constitutive relations that characterize �ow processes at a subgrid scale
(orders of 10–100m) [2].
In the present approach the hydraulic conductivity of a fractured medium is obtained con-

sidering a fracture network as an equivalent continuum medium and then describing the mean
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properties of fractures in a macroscopic framework. The macroscopic scale is related to the
REV dimensions where each fracture is conceptualized as a porous medium of granular struc-
ture. To make the approach valid, the REV size must be both larger than the scale of micro-
scopic heterogeneities and smaller than the scale of the domain being studied.
The connectivity among fractures determines the �ow description through the REV. In this

work the concept of active and inactive fractures [11] is adopted. Only a fraction of con-
nected fractures, called active fractures, contributes to groundwater �ow, while the remaining
fractures are inactive. The number of active fractures in an unsaturated system depends on
the pressure head and the capillarity properties of the fracture network [11]. All connected
fractures are active if the fracture system is fully saturated and all fractures are inactive if the
system is at residual saturation. This model assumes a preferential �ux dominated by gravity,
similar to the �ngering �ux observed in unsaturated porous media.
The hydraulic conductivity of a fractured medium is obtained from the mass �ow conser-

vation in the REV at any time t. The mass �ow is computed from the contribution of all
active fractures, assuming that the Buckingham–Darcy law [12, 13] is valid.
Under the hypothesis of an isotropic medium, using the Brooks–Corey model [6], and

assuming fractal distributions for the number and aperture of fractures, while the total number
of fractures are also supposed to obey a fractal law [15], closed-form analytical expressions for
the e�ective saturation of the fractured medium SEMF and the relative hydraulic conductivity
KRMF can be obtained.
If D (16D63) is the fractal dimension for the number of fractures, and d the fractal

dimension for the fracture aperture, de�ning q as q=D − 1=d, for q �=1, SEMF can be written
as

SEMF(h)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1; h¿h2

A1(�|h|)−�(�+1) + A2(�|h|)−1+q + A3; h1¡h¡h2

A4(�|h|)−�(�+1); h6h1

(4)

where �=�wg=2�, h1 =− (�b1)−1, h2 =− (�b2)−1,

A1 =
1− q

1− q− �(�+ 1)
b1−q−�(�+1)2

b1−q2 − b1−q1

A2 =
−�(�+ 1)

1− q− �(�+ 1)
1

b1−q2 − b1−q1

A3 =
−b1−q1

b1−q2 − b1−q1

and

A4 =
1− q

1− q− �(�+ 1)
b1−q−�(�+1)2 − b1−q−�(�+1)1

b1−q2 − b1−q1
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For the case q=1, SEMF takes the form

SEMF(h)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1; h¿h2

A1(�|h|)−�(�+1) + A2 ln(b1�|h|) + A3; h1¡h¡h2

A4(�|h|)−�(�+1); h6h1

(5)

where A1 = −b−�(�+1)
2 =�(�+1) ln(b1=b2), A2 =− [ln(b1=b2)]−1, A3 = [�(�+ 1) ln(b1=b2)]−1 and

A4 = b
−�(�+1)
2 − b−�(�+1)

1 =�(�+ 1) ln(b1=b2).
The hydraulic conductivity of the fractured medium is KMF(h)=KSMFKRMF(h), where KSMF

is the saturated hydraulic conductivity, and the relative hydraulic conductivity for a fractured
rock KRMF(h) can be written as

KRMF(h)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1; h¿h2

B1(�|h|)−2−(3+�)� + B2(�|h|)−3+q + B3; h1¡h¡h2

B4(�|h|)−2−(3+�)�; h6h1

(6)

where

B1 =
3− q

1− q− (3 + �)�
b1−q−(3+�)�2

b3−q2 − b3−q1

B2 =
−(3 + �)�− 2
1− q− (3 + �)�

1

b3−q2 − b3−q1

B3 =
−b3−q1

b3−q2 − b3−q1

and

B4 =
3− q

1− q− (3 + �)�
b1−q−(3+�)�2 − b1−q−(3+�)�1

b3−q2 − b3−q1

In these expressions, apertures in the range b16b6b2 are considered, h is the pressure head,
�(b) and � are parameters of the Brooks–Corey model, g is gravity acceleration, �w the water
density, � is a positive constant depending on properties of the fracture network [11], and �
is the water surface tension.

Numerical approximation

A �nite element procedure to solve the original di�erential problem (1) is adopted. The reader
can �nd a complete detail of the weak form in Reference [6]. The Galerkin formulation applied
yields the system

M(H)
@H
@t
+A(H)H=B (7)
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Figure 1. Numerical and analytical solutions of the in�ltration test designed by Ross and Parlange [16].

where H is the vector of heads at mesh nodal points, M and A are mass and sti�ness
matrices, respectively, while vector B includes sinks and sources. These non-linear integrals
are evaluated using a second-order Gaussian quadrature.
System (7) is approximated in time using two-time step �nite di�erences. A Crank–

Nicholson scheme using a fractional step with Richardson’s extrapolation was adopted. The
numerical solution at time n+ 1 is obtained as

Hn+1 =
Hn+1
CN; r − r−sHn+1

CN;1

1− r−s +O(	ts+1) (8)

where Hn+1
CN;1 and H

n+1
CN; r are the numerical solutions at time step n+1 using a Crank–Nicholson

scheme with time steps 	t and 	t=r, respectively, s denotes the order of accuracy of time dis-
cretization and 1=r is the fraction of 	t used for the fractional step strategy. In our case s=2,
r=3, and the extrapolated solution will be third-order accurate. This temporal integration is
unconditionally stable for r=3 for almost all values of 	t [6].
To preserve second-order accuracy of the Crank–Nicholson scheme the resulting non-linear

system of algebraic equations was linearized using a Picard scheme [17].
The iterative procedure starts with Hn+1;0 =Hn and stops whenever

2
[‖Hn+1; j+1 −Hn+1; j‖2
‖Hn+1; j+1 +Hn+1; j‖2

]1=2
6	 (9)

where superscript j denotes iteration level of Picard scheme and ‖ · ‖2 is the discrete
L2-norm and 	 is a prescribed value for numerical error of the Picard method. The sys-
tem of equations (7) once linearized using this algorithm involves a positive de�nite matrix
and is solved using a squared conjugated gradient solver with a preconditioning based on
incomplete lower-upper factorization.
The proposed algorithm is computationally e�cient and numerical results were validated

using analytical solutions obtained by Ross and Parlange [16]. The agreement between both
numerical and analytical solutions is shown in Figure 1.
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NUMERICAL EXAMPLE

In this section, the proposed algorithm is used to simulate groundwater in�ltration in a frac-
tured rock. The numerical test was designed to show the performance and practicity of the
algorithm in variably saturated conditions and a non-deformable fractured medium. Although
due to the nature of the problem, it is not possible to compare it with an analytical solution,
the result obtained shows a water behaviour according to what is expected. Fracturation data
were extracted from research by Liu and Bodvarsson [2] which represents a very low perme-
ability fractured rock. Similar fracture networks have been used by other researchers to study
�ow and transport properties of fractures [18].
The domain is 20m wide by 15m deep. As it is a two-dimensional example, results

represent a unitary thickness domain, which is discretized using 2730 triangular elements
(1436 nodes).
A hydrostatic state was assumed as initial condition, with a horizontal water table at 13m

below the surface. At time t=0, a constant in�ltration rate of 0.864mm=day was applied to
an interval of 10m located in the left half of the upper boundary. This low value has been
selected as corresponding to an arid zone. No-�ux conditions were applied to the rest of the
domain boundaries.
The hydraulic parameters of the constitutive model used in the present example correspond

to a two-dimensional synthetic fractured media designed by Liu and Bodvarsson [2]. The
fracture network consists of random vertical and horizontal fractures with an average density
in both directions of 2.2 fractures per meter (see Figure 2 taken from Reference [2]). The
trace length and aperture of fractures vary from 0.75 to 3.78m and 6:67×10−5 to 4:2×10−4 m,
respectively.

Figure 2. Random-generated fracture network used for the numerical experiment.
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Table I. Parameters of Liu–Bodvarsson model.

Parameter Value

� (cm−2) 1:39×10−2

M 0.379
Ks (cm=s) 1:013×10−3

�s 7:8×10−4

�r 10−6

Figure 3. E�ective saturation after 6 h of simulation.

The saturated hydraulic conductivity Ks and the saturated water content �s for this consti-
tutive model were estimated using the known cubic law expressions [19]

Ks =
�wge3

12
s
�s =

2e
s

(10)

where e is the average aperture; s, the mean distance between two fractures and 
, the dynamic
viscosity. The numerical values of these parameters are listed in Table I.
Figures 3–5 show e�ective saturation Se pro�les calculated after 6, 24 and 96 h of simula-

tion, respectively. As expected in fractured rocks, groundwater in�ltrates at a relatively fast
rate. Due to this fast in�ltration, an elevation of water table levels takes place on the left side
of the domain. The shape of pressure head contours in the upper region suggests a horizontal
�ow from the boundary with in�ltration to the right side of the domain where no in�ltration
is speci�ed. After a simulation of 4 days, the water table elevation in the left boundary can
be estimated in 6m (Figure 5).
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Figure 4. E�ective saturation after 24 h of simulation.

Figure 5. E�ective saturation after 96 h of simulation.

Due to the fact that analytical expressions were developed to compute water retention
curves, the �nal solution was obtained after a few minutes of processing in a Pentium IV
500MHz processor, allowing interactive tasks. There was no need to obtain these curves
via numerical simulation. This characteristic shows a high �exibility to compare media with
di�erent fracturation parameters, because it can be done just by changing these parameters in
the input data.
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CONCLUSIONS

In this paper a complete tool to simulate groundwater �ow in fractured media is presented. It
contains a constitutive model with closed analytical expressions developed for fractured hard
rocks, and a careful treatment of the temporal term of Richards Equations, using a third-order
scheme, together with a standard Galerkin formulation for the spatial discretization and a
Picard algorithm to deal with the non-linear terms.
A two-dimensional non-linear problem of non-saturated fractured medium groundwater �ow

based on the continuum approach has been simulated in a few minutes of processing in a
Pentium IV 500MHz processor, showing computational e�ciency. The analytical expressions
obtained to describe appropriately the water retention curves gives the code a good �exibility
to change fracturation parameters and then compare di�erent media. The numerical approxi-
mation involves the solution of Richards’ equation using a �nite element technique along with
a new constitutive model for characterizing fractured media. An accurate third-order approxi-
mation on time derivatives was used, and no convergence problems were observed. From the
numerical example we can conclude that the algorithm proposed is a useful tool for predicting
moist distribution and for studying groundwater in�ltration in fractured media under variably
saturated conditions.
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